Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Food Chem Toxicol ; 188: 114640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583501

RESUMO

This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.


Assuntos
Aflatoxina B1 , Depsipeptídeos , Esterigmatocistina , Humanos , Esterigmatocistina/toxicidade , Aflatoxina B1/toxicidade , Depsipeptídeos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células CACO-2 , Fígado/efeitos dos fármacos , Rim/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Células HEK293 , Células Hep G2
2.
Toxins (Basel) ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755964

RESUMO

Beauvericin (BEA) is an emerging mycotoxin produced by some species of Fusarium genera that widely contaminates food and feed. Gentiana lutea is a protected medicinal plant known for its antioxidant and anti-inflammatory properties, which are attributed to its rich content of bioactive compounds. In order to evaluate the beneficial effects of G. lutea flower against BEA cytotoxicity, the aim of this study is to evaluate changes in protein expression after Jurkat cell exposure through a proteomics approach. To carry out the experiment, cells were exposed to intestinally digested G. lutea flower alone or in combination with the BEA standard (100 nM) over 7 days. Differentially expressed proteins were statistically evaluated (p < 0.05), revealing a total of 172 proteins with respect to the control in cells exposed to the BEA standard, 145 proteins for G. lutea alone, and 139 proteins when exposing the cells to the combined exposure. Bioinformatic analysis revealed processes implicated in mitochondria, ATP-related activity, and RNA binding. After careful analysis of differentially expressed proteins, it was evident that G. lutea attenuated, in most cases, the negative effects of BEA. Furthermore, it decreased the presence of major oncoproteins involved in the modulation of immune function.


Assuntos
Depsipeptídeos , Gentiana , Gentiana/química , Gentiana/metabolismo , Antioxidantes/química , Depsipeptídeos/toxicidade , Depsipeptídeos/química , Flores/química , Flores/metabolismo
3.
Toxicon ; 231: 107195, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315815

RESUMO

Emerging mycotoxins are currently gaining more attention due to their high frequency of contamination in foods and grains. However, most data available in the literature are in vitro, with few in vivo results that prevent establishing their regulation. Beauvericin (BEA), enniatins (ENNs), emodin (EMO), apicidin (API) and aurofusarin (AFN) are emerging mycotoxins frequently found contaminating food and there is growing interest in studying their impact on the liver, a key organ in the metabolization of these components. We used an ex vivo model of precision-cut liver slices (PCLS) to verify morphological and transcriptional changes after acute exposure (4 h) to these mycotoxins. The human liver cell line HepG2 was used for comparison purposes. Most of the emerging mycotoxins were cytotoxic to the cells, except for AFN. In cells, BEA and ENNs were able to increase the expression of genes related to transcription factors, inflammation, and hepatic metabolism. In the explants, only ENN B1 led to significant changes in the morphology and expression of a few genes. Overall, our results demonstrate that BEA, ENNs, and API have the potential to be hepatotoxic.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Depsipeptídeos , Micotoxinas , Humanos , Animais , Suínos , Células Hep G2 , Micotoxinas/análise , Linhagem Celular , Depsipeptídeos/toxicidade , Contaminação de Alimentos/análise
4.
Food Chem Toxicol ; 168: 113361, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35970269

RESUMO

Enniatins (ENNs) A1 and B1 are non-regulated mycotoxins produced by Fusarium spp. that commonly occur in different types of food. These toxins are cytotoxic in several cell lines, but their mechanism of action is unclear. In this study, the cytotoxic effects of ENNs A1 and B1 in SH-SY5Y human neuroblastoma cells were analysed. Moreover, to better understand their mechanism of action, mitochondrial function, reactive oxygen species (ROS) levels and calcium fluxes were monitored. ENNs A1 and B1 reduced cell viability, presenting IC50 values of 2.0 and 2.7 µM, respectively. Both toxins induced caspase-dependent apoptosis, but only ENN A1 increased ROS production. Apoptotic cell death seems to be triggered by the increase in cytosolic calcium produced by both ENNs, since the toxins altered Ca2+ homeostasis by depleting intracellular reservoirs. Finally, binary combinations of ENN A1, ENN B1, ENN A and ENN B were tested. All mixtures resulted in an antagonistic effect, with the exception of ENN A and ENN B1 combination, which produced an additive effect. The results presented in this study provide the first evidence of ENNs A1 and B1 effects on calcium fluxes, providing new insights into the mechanism of action of these mycotoxins.


Assuntos
Depsipeptídeos , Micotoxinas , Neuroblastoma , Cálcio , Depsipeptídeos/toxicidade , Homeostase , Humanos , Micotoxinas/análise , Espécies Reativas de Oxigênio
5.
Toxins (Basel) ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202179

RESUMO

Food contaminants of bacterial or fungal origin frequently contaminate staple foods to various extents. Among others, the bacterial toxin cereulide (CER) and the mycotoxin deoxynivalenol (DON) co-occur in a mixed diet and are absorbed by the human body. Both toxins exert dis-tinctive mitotoxic potential. As damaged mitochondria are removed via autophagy, mitochondrial and lysosomal toxicity were assessed by applying low doses of single and combined toxins (CER 0.1-50 ng/mL; DON 0.01-5 µg/mL) to HepG2 liver cells. In addition to cytotoxicity assays, RT-qPCR was performed to investigate genes involved in lysosomal biogenesis and autophagy. CER and DON caused significant cytotoxicity on HepG2 cells after 5 and 24 h over a broad concentration range. CER, alone and in combination with DON, increased the transcription of the autophagy related genes coding for the microtubule associated protein 1A/1B light chain 3 (LC3) and sequestome 1 (SQSTM1) as well as LC3 protein expression which was determined using immunocytochemistry. DON increased LC3 protein expression without induction of gene transcription, hence it seems plausible that CER and DON act on different pathways. The results support the hypothesis that CER induces autophagy via the LC3 pathway and damaged mitochondria are therefore eliminated.


Assuntos
Toxinas Bacterianas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/toxicidade , Células Hep G2/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Micotoxinas/toxicidade , Tricotecenos/toxicidade , Contaminação de Alimentos , Humanos
6.
Food Chem Toxicol ; 161: 112819, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35038498

RESUMO

Beauvericin (BEA) and enniatin B (ENNB) are emerging mycotoxins frequently detected in plant-based fish feed. With ionophoric properties, they have shown cytotoxic potential in mammalian models. Sensitivity in fish is still largely unknown. Primary hepatocytes isolated from Atlantic salmon (Salmo salar) were used as a model and exposed to BEA and ENNB (0.05-10 µM) for 48 h. Microscopy, evaluation of cell viability, total ATP, total H2O2, total iron content, total Gpx enzyme activity, and RNA sequencing were used to characterize the toxicodynamics of BEA and ENNB. Both mycotoxins became cytotoxic at ≥ 5 µM, causing condensation of the hepatocytes followed by formation of blister-like protrusions on the cell's membrane. RNA sequencing analysis at sub-cytotoxic levels indicated BEA and ENNB exposed hepatocytes to experience increased energy expenditure, elevated oxidative stress, and iron homeostasis disturbances sensitizing the hepatocytes to ferroptosis. The present study provides valuable knowledge disclosing the toxic action of these mycotoxins in Atlantic salmon primary hepatocytes.


Assuntos
Depsipeptídeos/toxicidade , Ferroptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Ferro/metabolismo , Fígado/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/administração & dosagem , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Lisossomos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Salmo salar
7.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502057

RESUMO

Cereulide is one of the main food-borne toxins for vomiting synthesized by Bacillus cereus, and it widely contaminates meat, eggs, milk, and starchy foods. However, the toxicological effects and mechanisms of the long-time exposure of cereulide in vivo remain unknown. In this study, oral administration of 50 and 200 µg/kg body weight cereulide in the mice for 28 days caused oxidative stress in liver and kidney tissues and induce abnormal expression of inflammatory factors. In pathogenesis, cereulide exposure activated endoplasmic reticulum stress (ER stress) via the pathways of inositol-requiring enzyme 1α (IRE1α)/Xbox binding protein (XBP1) and PRKR-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (eIF2α), and consequently led to the apoptosis and tissue damages in mouse liver and kidney. In vitro, we confirmed that the accumulation of reactive oxygen species (ROS) caused by cereulide is the main factor leading to ER stress in HepaRG and HEK293T cells. Supplementation of sodium butyrate (NaB) inhibited the activations of IRE1α/XBP1 and PERK/eIF2α pathways caused by cereulide exposure in mice, and reduced the cell apoptosis in liver and kidney. In conclusion, this study provides a new insight in understanding the toxicological mechanism and prevention of cereulide exposure.


Assuntos
Toxinas Bacterianas/toxicidade , Depsipeptídeos/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Apoptose , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/metabolismo
8.
Toxins (Basel) ; 13(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917490

RESUMO

Beauvericin (BEA) and deoxynivalenol are toxins produced by Fusarium species that can contaminate food and feed. The aim of this study was to assess the effects of these mycotoxins on the maturation of oocytes from gilts and sows. Furthermore, the antioxidant profiles in the oocytes' environment were assessed. Cumulus-oocyte-complexes (COCs) from gilts and sows were exposed to beauvericin (BEA) or deoxynivalenol (DON) and matured in vitro. As an extra control, these COCs were also exposed to reactive oxygen species (ROS). The maturation was mostly impaired when oocytes from gilts were exposed to 0.02 µmol/L DON. Oocytes from sows were able to mature even in the presence of 5 µmol/L BEA. However, the maturation rate of gilt oocytes was already impaired by 0.5 µmol/L BEA. It was observed that superoxide dismutase (SOD) and glutathione (GSH) levels in the follicular fluid (FF) of gilt oocytes was higher than that from sows. However, the expression of SOD1 and glutathione synthetase (GSS) was higher in the oocytes from sows than in those from gilts. Although DON and BEA impair cell development by diverse mechanisms, this redox imbalance may partially explain the vulnerability of gilt oocytes to these mycotoxins.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Depsipeptídeos/toxicidade , Peróxido de Hidrogênio/metabolismo , Oócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tricotecenos/toxicidade , Ração Animal/microbiologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células do Cúmulo/metabolismo , Feminino , Microbiologia de Alimentos , Fusarium/metabolismo , Glutationa/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Sus scrofa
9.
Toxicology ; 456: 152784, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33872728

RESUMO

Cell cycle progression and programmed cell death are imposed by pathological stimuli of extrinsic or intrinsic including the exposure to neurotoxins, oxidative stress and DNA damage. All can cause abrupt or delayed cell death, inactivate normal cell survival or cell death networks. Nevertheless, the mechanisms of the neuronal cell death are unresolved. One of the cell deaths triggers which have been wildly studied, correspond to mycotoxins produced by Fusarium species, which have been demonstrated cytotoxicity and neurotoxicity through impairing cell proliferation, gene expression and induction of oxidative stress. The aim of present study was to analyze the cell cycle progression and cell death pathway by flow cytometry in undifferentiated SH-SY5Y neuronal cells exposed to α-zearalenol (α-ZEL), ß-zearalenol (ß-ZEL) and beauvericin (BEA) over 24 h and 48 h individually and combined at the following concentration ranges: from 1.56 to 12.5 µM for α-ZEL and ß-ZEL, from 0.39 to 2.5 µM for BEA, from 1.87 to 25 µM for binary combinations and from 3.43 to 27.5 µM for tertiary combination. Alterations in cell cycle were observed remarkably for ß-ZEL at the highest concentration in all treatments where engaged (ß-ZEL, ß-ZEL + BEA and ß-ZEL + α-ZEL), for both 24 h and 48 h. by activating the cell proliferation in G0/G1 phase (up to 43.6 %) and causing delays or arrests in S and G2/M phases (up to 19.6 %). Tertiary mixtures revealed increases of cell proliferation in subG0 phase by 4-folds versus control. Similarly, for cell death among individual treatments ß-ZEL showed a significant growth in early apoptotic cells population at the highest concentration assayed as well as for all combination treatments where ß-ZEL was involved, in both early apoptotic and apoptotic/necrotic cell death pathways.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Depsipeptídeos/toxicidade , Micotoxinas/toxicidade , Zearalenona/toxicidade , Apoptose/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Estrogênios não Esteroides/toxicidade , Humanos
10.
Food Chem Toxicol ; 152: 112227, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33878370

RESUMO

Beauvericin (BEA), α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL), are produced by several Fusarium species that contaminate cereal grains. These mycotoxins can cause cytotoxicity and neurotoxicity in various cell lines and they are also capable of produce oxidative stress at molecular level. However, mammalian cells are equipped with a protective endogenous antioxidant system formed by no-enzymatic antioxidant and enzymatic protective systems such as glutathione peroxidase (GPx), glutathione S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD). The aim of this study was evaluating the effects of α-ZEL, ß-ZEL and BEA, on enzymatic GPx, GST, CAT and SOD activity in human neuroblastoma cells using the SH-SY5Y cell line, over 24 h and 48 h with different treatments at the following concentration range: from 1.56 to 12.5 µM for α-ZEL and ß-ZEL, from 0.39 to 2.5 µM for BEA, from 1.87 to 25 µM for binary combinations and from 3.43 to 27.5 µM for tertiary combination. SH-SY5Y cells exposed to α-ZEL, ß-ZEL and BEA revealed an overall increase in the activity of i) GPx, after 24 h of exposure up to 24-fold in individual treatments and 15-fold in binary combination; ii) GST after 24 h of exposure up to 10-fold (only in combination forms), and iii) SOD up to 3.5- and 5-fold in individual and combined treatment, respectively after 48 h of exposure. On the other hand, CAT activity decreased significantly in all treatments up to 92% after 24 h except for ß-ZEL + BEA, which revealed the opposite.


Assuntos
Depsipeptídeos/toxicidade , Glutationa Transferase/metabolismo , Micotoxinas/toxicidade , Peroxidases/metabolismo , Zeranol/análogos & derivados , Catalase/metabolismo , Linhagem Celular Tumoral , Ensaios Enzimáticos , Glutationa Peroxidase/metabolismo , Humanos , Superóxido Dismutase/metabolismo , Zeranol/toxicidade
11.
Toxins (Basel) ; 13(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806705

RESUMO

The human intestine is regularly exposed to ingested food contaminants, such as fungal and bacterial toxins, which have been described to co-occur in a mixed diet. Thus, it is of utmost importance to understand possible interactions between contaminants of different origin. Hence, we investigated the single and combined effects of one of the most abundant mycotoxins, deoxynivalenol (DON; 0.1 to 10 µg/mL), and the bacterial toxin cereulide (CER; 1 to 100 ng/mL) on differentiated human Caco-2 (C2BBe1) cells cultured in a transwell system. We tested the capacity of the two toxins to alter the intestinal integrity and further investigated the uptake of both compounds and the formation of selected DON metabolites. CER alone (10 and 100 ng/mL) and in combination with DON (10 ng/mL CER with 1 µg/mL DON) was found to alter the barrier function by increasing the transepithelial electrical resistance and the expression of the tight junction protein claudin-4. For the first time, DON-3-sulfate was identified as a metabolite of human intestinal cells in vitro. Moreover, co-incubation of CER and DON led to an altered ratio between DON and DON-3-sulfate. Hence, we conclude that co-exposure to CER and DON may alter the intestinal barrier function and biotransformation of intestinal cells.


Assuntos
Diferenciação Celular , Depsipeptídeos/toxicidade , Células Epiteliais/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Tricotecenos/toxicidade , Biotransformação , Células CACO-2 , Claudina-4/metabolismo , Depsipeptídeos/metabolismo , Impedância Elétrica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Permeabilidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Tricotecenos/metabolismo
12.
Toxins (Basel) ; 13(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579040

RESUMO

Coffee silverskin and spent coffee have been evaluated in a neuroblastoma cell line (SH-SY5Y cells) against beauvericin (BEA) and α-zearalenol (α-ZEL)-induced cytotoxicity with different strategies of treatment. First, the direct treatment of mycotoxins and coffee by-products extracts in SH-SY5Y cells was assayed. IC50 values for α-ZEL were 20.8 and 14.0 µM for 48 h and 72 h, respectively and, for BEA only at 72 h, it was 2.5 µM. Afterwards, the pre-treatment with spent coffee obtained by boiling water increased cell viability for α-ZEL at 24 h and 48 h from 10% to 16% and from 25% to 30%, respectively; while with silverskin coffee, a decrease was observed. Opposite effects were observed for BEA where an increase for silverskin coffee was observed at 24 h and 48 h, from 14% to 23% and from 25% to 44%, respectively; however, a decrease below 50% was observed for spent coffee. Finally, the simultaneous treatment strategy for the highest concentration assayed in SH-SY5Y cells provided higher cytoprotection for α-ZEL (from 44% to 56% for 24 h and 48 h, respectively) than BEA (30% for 24 h and 48 h). Considering the high viability of coffee silverskin extracts for SH-SY5Y cells, there is a forthcoming promising use of these unexploited residues in the near future against mycotoxins effects.


Assuntos
Morte Celular/efeitos dos fármacos , Café , Depsipeptídeos/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Sementes , Zeranol/análogos & derivados , Linhagem Celular Tumoral , Café/química , Citoproteção , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Sementes/química , Fatores de Tempo , Zeranol/toxicidade
13.
J Med Chem ; 64(2): 991-1000, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33417771

RESUMO

Coibamide A (1) is a highly N-methylated cyclodepsipeptide with low nanomolar antiproliferative activities against various cancer cell lines. In previous work, we discovered a simplified analogue, [MeAla3-MeAla6]-coibamide (1a), which exhibited the same inhibitory abilities as coibamide A. Herein, to reduce the whole-body toxicity and improve the solubility of 1a, two novel peptide-drug conjugates RGD-SS-CA (2) and RGD-VC-CA (3) were designed, synthesized, and evaluated. Composed of cyclodepsipeptide 1a, a tumor-homing RGD motif, and a conditionally labile linker, the conjugates are expected to release 1a tracelessly in specific tumor microenvironments. Compared with RGD-VC-CA (3), RGD-SS-CA (2) proved to be superior in in vitro drug release and cytotoxicity tests. Notably, intravenous injection of RGD-SS-CA (2) into mice-bearing human tumor xenografts induced significant tumor growth suppression with negligible toxicity. Therefore, as a novel prodrug of the coibamide A analogue, conjugate 2 has great potential for further exploration in cancer drug discovery.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Depsipeptídeos/síntese química , Depsipeptídeos/farmacologia , Animais , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Depsipeptídeos/química , Depsipeptídeos/toxicidade , Desenho de Fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pró-Fármacos/farmacologia , Solubilidade , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Protein J ; 40(2): 234-244, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515365

RESUMO

BACKGROUND: Alpha-1-syntrophin (SNTA1) is emerging as a novel modulator of the actin cytoskeleton. SNTA1 binds to F-actin and regulates intracellular localization and activity of various actin organizing signaling molecules. Aberration in syntrophin signaling has been closely linked with deregulated growth connected to tumor development/metastasis and its abnormal over expression has been observed in breast cancer. In the present work the effect of jasplakinolide, an actin-binding cyclodepsipeptide, on the SNTA1 protein activity and SNTA1 mediated downstream cellular events was studied in MDA-MB-231 breast cancer cell line. METHODS: SNTA1 protein levels and phosphorylation status were determined in MDA-MB-231 cells post jasplakinolide exposure using western blotting and immunoprecipitation techniques respectively. MDA-MB-231 cells were transfected with WT SNTA1 and DM SNTA1 (Y215/229 phospho mutant) and simultaneously treated with jasplakinolide. The effect of jasplakinolide and SNTA1 protein on cell migration was determined using the boyden chamber assay. RESULTS: Jasplakinolide treatment decreases proliferation of MDA-MB-231 cells in both dose and time dependent manner. Results suggest that subtoxic doses of jasplakinolide induce morphological changes in MDA-MB-231 cells from flat spindle shape adherent cells to round weakly adherent forms. Mechanistically, jasplakinolide treatment was found to decrease SNTA1 protein levels and its tyrosine phosphorylation status. Moreover, migratory potential of jasplakinolide treated cells was significantly inhibited in comparison to control cells. CONCLUSION: Our results demonstrate that jasplakinolide inhibits cell migration by impairing SNTA1 functioning in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio , Movimento Celular/efeitos dos fármacos , Depsipeptídeos , Proteínas de Membrana , Proteínas Musculares , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Depsipeptídeos/toxicidade , Feminino , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Musculares/análise , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Fosforilação/efeitos dos fármacos
15.
Toxins (Basel) ; 12(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371249

RESUMO

Cryptophycin-1 is a cyanotoxin produced by filamentous cyanobacteria. It has been evaluated as an anticancer agent with great potential. However, its synthesis provides insufficient yield for industrial use. An alternative solution for metabolite efficient production is to stress cyanobacteria by modifying the environmental conditions of the culture (Nostoc sp. ATCC 53789). Here, we examined the effects of light photoperiod, wavelength, and intensity. In light photoperiod, photoperiods 24:0 and 16:8 (light:dark) were tested while in wavelength, orange-red light was compared with blue. Medium, high, and very high light intensity experiments were performed to test the effect of light stress. For a 10-day period, growth was measured, metabolite concentration was calculated through HPLC, and the related curves were drawn. The differentiation of light wavelength had a major effect on the culture, as orange-red filter contributed to noticeable increase in both growth and doubled the cyanotoxin concentration in comparison to blue light. Remarkably, constant light provides higher cryptophycin yield, but slightly lower growth rate. Lastly, the microorganism prefers medium light intensities for both growth and metabolite expression. The combination of these optimal conditions would contribute to the further exploitation of cryptophycin.


Assuntos
Antineoplásicos/toxicidade , Toxinas Bacterianas/toxicidade , Depsipeptídeos/toxicidade , Luz , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Nostoc , Fotoperíodo , Antineoplásicos/isolamento & purificação , Toxinas Bacterianas/efeitos da radiação , Toxinas de Cianobactérias , Depsipeptídeos/isolamento & purificação , Depsipeptídeos/efeitos da radiação , Toxinas Marinhas/efeitos da radiação , Microcistinas/efeitos da radiação , Nostoc/isolamento & purificação , Nostoc/efeitos da radiação
16.
Toxicon ; 188: 164-171, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33164869

RESUMO

In the present work, different natural compounds from coffee by-product extracts (coffee silverskin and spent coffee) rich in polyphenols, was investigated against beauvericin (BEA) induced-cytotoxicity on SH-SY5Y cells. Spent coffee arise as waste products through the production of instant coffee and coffee brewing; while the silverskin is a tegument which is removed and eliminated with toasting coffee grains. First of all, polyphenol extraction methods, measurement of total polyphenols content and its identification were carried out. Afterwards evaluating in vitro effects with MTT assay on SH-SY5Y cells of coffee by-product extracts and mycotoxins at different concentrations and exposure times was performed. TPC in silverskin coffee by-product extracts was >10 times higher than in spent coffee by-product extracts. Chlorogenic acid was the majority polyphenol detected. Viability for BEA reached IC50 values at 72h (2.5 µM); boiling water silverskin coffee extract reached the highest viability also in pre-treatment BEA exposure and compared with MeOH and MeOH:H2O (v/v, 50:50) extracts. These results in SH-SY5Y cells highlight the use of such residues as supplements or bioactive compounds in the future.


Assuntos
Café , Depsipeptídeos/toxicidade , Extratos Vegetais , Antioxidantes , Produtos Biológicos , Linhagem Celular Tumoral , Humanos , Micotoxinas , Neuroblastoma
17.
Toxicol Lett ; 334: 44-52, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956828

RESUMO

The co-presence of mycotoxins from fungi of the genus Fusarium is a common fact in raw food and food products, as trace levels of them or their metabolites can be detected, unless safety practices during manufacturing are carried out. Zearalenone (ZEA), its metabolites α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL) and, beauvericin (BEA) are co/present in cereals, fruits or their products which is a mixture that consumer are exposed and never evaluated in neuronal cells. In this study the role of oxidative stress and intracellular defense systems was assessed by evaluating reactive oxygen species (ROS) generation and glutathione (GSH) ratio activity in a human neuroblastoma cell line, SH-SY5Y cells, treated individually and combined with α-ZEL, ß-ZEL and BEA. It was further examined the expression of genes involved in cell apoptosis (CASP3, BAX, BCL2) and receptors of (endogenous or exogenous) estrogens (ERß and GPER1), by RT-PCR in those same conditions. These results demonstrated elevated ROS levels in combinations where α-ZEL was involved (2.8- to 8-fold compared to control); however, no significant difference in ROS levels were detected when single mycotoxin was tested. Also, the results revealed a significant increase in GSH/GSSG ratio at all concentrations after 24 h. Expression levels of CASP3 and BAX were up regulated by α-ZEL while CASP3 and BCL2 were down regulated by ß-ZEL, revealing how ZEA´s metabolites can induce the expression of cell apoptosis genes. However, BEA down-regulated the expression of BCL2. Moreover, ß-ZEL + BEA was the only combination treatment which was able to down regulate the levels of cell apoptosis gene expression. Relying to our findings, α-ZEL, ß-ZEL and BEA, induce injury in SH-SY5Y cells elevating oxidative stress levels, disturbing the antioxidant activity role of glutathione system and finally, causing disorder in the expressions and activities of the related apoptotic cell death genes.


Assuntos
Depsipeptídeos/toxicidade , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Zearalenona/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Zearalenona/metabolismo , Zeranol/análogos & derivados , Zeranol/metabolismo , Zeranol/toxicidade
18.
Food Chem Toxicol ; 141: 111414, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32387444

RESUMO

Goji berry has recently been introduced in Mediterranean diet and its consumption is increasing. This study aims to determine cytoprotection of lutein (LUT), zeaxanthin (ZEAX) and goji berry extract (GBE) rich in carotenoids against Beauvericin (BEA)-induced cytotoxicity on SH-SY5Y neuroblastoma cells. Both carotenoids and GBE showed cytoprotective effects. Cytoprotection was evaluated by simultaneous combination of the two xanthophylls LUT and ZEAX with BEA, as well as using pre-treatment assays. The highest protective effect occurred in 16%, 24% and 12% respectively for LUT, ZEAX and LUT + ZEAX incubating simultaneously with BEA, while by pre-treatment assay LUT showed a cytoprotection effect over 30% and ZEAX alone or LUT + ZEAX promoted only a slight cytoprotection (<10%). Pre-treatment assays with GBE, showed a cytoprotection, between 3 and 20%, for BEA concentrations ranging from 0.1 to 6.25 µM, whereas no protective effect was observed when the cells were simultaneously incubated with GBE and BEA. Finally, by means of CI-isobologram method, the interaction between LUT, ZEAX and BEA were evaluated, and the results showed an synergism effect for almost all combinations tested. The data presented shows a option of using goji berries to potentially mitigate the toxicity of beauvericin eventually present in foods.


Assuntos
Carotenoides/farmacologia , Citoproteção/efeitos dos fármacos , Depsipeptídeos/toxicidade , Lycium/química , Carotenoides/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Luteína/farmacologia , Neuroblastoma/patologia , Extratos Vegetais/farmacologia , Zeaxantinas/farmacologia
19.
Toxins (Basel) ; 12(4)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230869

RESUMO

Beauvericin (BEA) and zearalenone derivatives, α-zearalenol (α-ZEL), and ß-zearalenol (ß-ZEL), are produced by several Fusarium species. Considering the impact of various mycotoxins on human's health, this study determined and evaluated the cytotoxic effect of individual, binary, and tertiary mycotoxin treatments consisting of α-ZEL, ß-ZEL, and BEA at different concentrations over 24, 48, and 72 h on SH-SY5Y neuronal cells, by using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazoliumbromide). Subsequently, the isobologram method was applied to elucidate if the mixtures produced synergism, antagonism, or additive effects. Ultimately, we determined the amount of mycotoxin recovered from the media after treatment using liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-qTOF-MS). The IC50 values detected at all assayed times ranged from 95 to 0.2 µM for the individual treatments. The result indicated that ß-ZEL was the most cytotoxic mycotoxin when tested individually. The major effect detected for all combinations assayed was synergism. Among the combinations assayed, α-ZEL + ß-ZEL + BEA and α-ZEL + BEA presented the highest cytotoxic potential with respect to the IC value. At all assayed times, BEA was the mycotoxin recovered at the highest concentration in individual form, and ß-ZEL + BEA was the combination recovered at the highest concentration.


Assuntos
Depsipeptídeos/toxicidade , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Zeranol/análogos & derivados , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Neurônios/patologia , Fatores de Tempo , Zeranol/toxicidade
20.
Food Chem Toxicol ; 139: 111247, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32165234

RESUMO

The co-presence of more than one mycotoxin in food is being evidenced in last food surveys as reported in the literature. Beauvericin (BEA) is a non-legislated emergent mycotoxin while Ochratoxin A (OTA) has been widely studied and legislated. Concentration range individually studied was from 2.5 to 0.3 µM for BEA and from 25 to 3.1 µM for OTA; binary mixture [BEA + OTA] comprised concentrations of 1:10 ratio from [2.5 + 25] to [3.1 + 0.3] µM. Potential of toxicity of BEA in HepG2 cells was the highest at all times assayed (24, 48 and 72h). LPO was performed through malondyaldehyde (MDA) detection denoting in the binary mixture for [1.25 + 12.5] µM and at 24 and 72h the highest disturbance values. ROS denoted differences respect to the control at different times specially for OTA, while in binary combination only for few point times was denoted. Effects detected for ROS and LPO were connected with alterations detected for glutathione levels of oxidized and reduced form. A real scenario of consumers chronically exposed to different mycotoxins and their mixtures is here presented highlighting the good methodology to assess the risk from exposure to combinations of chemicals in food.


Assuntos
Depsipeptídeos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Micotoxinas/toxicidade , Ocratoxinas/toxicidade , Linhagem Celular Tumoral , Glutationa/metabolismo , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA